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Motivations

Importance of chemical phenomena in various applications

Alteration chimique des composants du stockage

Séquestration du CO2

G. Pépin (Andra) A. Michel (IFP)
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Transport with chemical reactions

Mobile species

ω∂tc i + ∇ · (uc i −D∇c i)︸ ︷︷ ︸
L(c)

=
NR

∑
j=1

νijRj(c1, . . . ,cNS ), i = 1, . . . ,NS

c i : concentration of i th species [mol/l]

D Dispersion – diffusion tensor [m2/s]

Rj reaction term for j th reaction

ω : porosity [–]

u Darcy velocity [m/s]

νij stoichiometric coeff.

Condense transport solver, one time step

c(t + ∆t) = ΨT (R,c(t))

Mass balance for immobile species

ρs∂t c̄ i =
NR

∑
j=1

νijRj(c1, . . . ,cNS , c̄1, . . . , c̄N̄S
), i = 1, . . . , N̄S
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Modeling general equilibrium models

Ns+N̄S

∑
j=1

νijY j � 0, i = 1, . . . ,Nr Ns + N̄S species ,Nr reactions.

Mass action law ν log

(
c
c̄

)
+ logK = 0

Mass conservation νT

(
c
c̄

)
=

(
T
W

) System of non-linear equations
T known from transport, W
imposed

Mineral reactions
Dissolution of solid, precipitation of aqueous species. Reactions with
threshold : which species appear unknown a priori.

Solubility product Π = logKp + Sp logc,

{
p = 0 if Π < 0

Π = 0 otherwise
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Numerical solution of nonlinear problem

Take concentration logarithms as main unknowns
Use globalized Newton’s method (line search, trust region).

Methods for minerals
Standard procedure : combinatorial search

Reformulate as complementarity problem

Interior point algorithm (Saaf et al. (’96), MK (05))

Also semi–smooth Newton (Kräutle)

Role of chemical model
Given totals T (and W , known), split
into mobile (C) and immobile (F ) total
concentrations

Chemistry solver

H

(
logc
log c̄

)
=

(
T
W

)
F = ΨC(T ,W )
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Formulations and solution strategies

Eliminate unkown equilibrium reaction rates by introducing mobile and
immobile totals.

φ∂tC + ∂tF + LC = 0 with F = Ψc(C + F)

Fixed point (aka OS) Yeh–Tripathi, Carrayrou et al., Carrera et al.

+ easy to program, code reuse
− not robust, small time steps

Direct subsitution Lichtner et al., Saaltink et al.

+ accurate, robust,
− difficult to code, large non-linear system

Others Nonlinear conjugate gradient (Bouillard, Herbin,
Montarnal)
Elimination technique (Knabner, Kraütle, Hoffmann)

De Dieuleveult, JE, MK (JCP ’09)
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A global method based on DAE formulation

CC formulation, explicit chemistry

φ∂tC + ∂tF + LC = 0

H

(
logc
log c̄

)
−
(

C + F
W

)
= 0

F −F

(
logc
log c̄

)
= 0.

+ Explicit Jacobian

+ Chemistry function, no
chemical solve

− Intrusive approach (chemistry
not a black box)

− Precipitation not easy to
include (semi-smooth Newton OK)

Coupled system is index 1 DAE

K
dy
dt

+ f (y) = 0

Use standard DAE software
C. de Dieuleveult (Andra thesis),
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A global method from the fixed–point formulation (1)

Discrete non-linear systemCn+1 = ΨT

(
φ

F n−F n+1

∆t
,Cn
)

F n+1 = ΨC(Cn+1 + F n+1)

Can be solved by block Gauss Seidel or by Newton’s method

Residual computation
1 Apply ΨT : solve transport for

each species,
2 Apply ΨC : solve chemistry for

each grid cell.

+ Non-intrusive approach

+ Precipitation can be included

− One chemical equilibrium solve
for each function evaluation
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Newton–Krylov method

Solution by Newton–Krylov method
Solve the linear system by an iterative method (GMRES)

Requires only jacobian matrix by vector products, Jacobian not stored

Keep transport and chemistry as black–boxes (up to Jacobian
computation)

Used for CFD, shallow water, radiative transfer and reactive transport
(Hammond, Valocchi, Lichtner, Adv. Wat. Res. 05)

Inexact Newton
Approximation of the Newton’s direction ‖f ′(xk )d + f (xk )‖ ≤ η‖f (xk )‖
Choice of the forcing term η = γ‖f (xk )‖2/‖f (xk−1)‖2 (Kelley, Eisenstat
and Walker)

Keep superlinear convergence (locally)
Avoid oversolving the linear system

L. Amir’s thesis, Amir, MK (Comp. Geosci. 09)
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Preconditioning

Essential for good linear performance

Difficult for matrix free formulation

Simplified, 1 species model, with explicit sorption (with A. Taakili)

Algebraic elimination of mobile conc. equivalent to Schur complement of block
Gauss–Seidel precond.

Can show eigenvalues of preconditioned op. bounded away from 0,
independent of h, but convergence of GMRES not determined by eigenvalues
Field of values analysis ?
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The Reactive transport benchmark

The setup
Designed by J. Carrayrrou, M. Kern, P. Knabner

Concentrate on numerical difficulties : simple geometry, « abstract »
chemistry

3 levels of chemistry (sorption, equilibrium minerals, kinetics)

The benchmark
Results from 6 groups, awards to 4 groups

International workshop (Ph. Ackerer, Strasbourg, Jan. 2008)

Special issue in « Computational Geosciences » (ed. Ph. Ackerer), 6
papers + intro + synthesis
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1D benchmark results

Loc. of peak S conc.
GDAE1D 0.0175 0.966
NK 0.0167 0.742
Erlangen 0.0167 0.852
Specy 0.0158 0.968
HYTEC 0.0170 0.286
MIN3P 0.0175 0.725
Reference 0.0173 0.985

GDAE1D more accurate, but slower
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2D benchmark results

One species among 13 at time t=1000

Erlangen result with very fine mesh

GDAE result with coarse mesh
Numerical dispersion due to the coarse
mesh but accurate results
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2D Andra test case

Chemical description
Injection of alcaline water (NaOH) into a porous medium containing
quartz (SiO2)

Dissolution of quartz : H4SiO4 −−⇀↽−− SiO2 + 2 H2O

Aqueous reactions : H4SiO4 −−⇀↽−− H3SiO–
4 + H+, H2O−−⇀↽−− H+ + OH–

Sodium is a tracer

Geometry and transport conditions
Rectangular domain of size 5mx3.5m

Injection at time t = 0 of NaOH at point
(1,1.75)

Advection (v = 5.710−7m/s) and
dispersion

Duration 30 days
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CO2 sequestration test case ANR

Minimal chemical system that still "looks" realistic for CO2 storage

Dissolution of CO2 in water,
dissolution of calcite. Gas
assumed immobile (capillary
trapping), decouples flow from
reactive transport.

Chemical system

H2O−−⇀↽−− H+ + OH– water dissociation

H2O + CO2 (aq) −−⇀↽−− HCO–
3 + H+ dissociation of aqueous CO2

CO2 (g) −−⇀↽−− CO2 (aq) gas dissolution

CaCO3 + H+ −−⇀↽−− Ca+
2 + HCO–

3 Dissolution of calcite

Erhel–Kern (INRIA) Reactive transport MoMaS, Nov. 2-4, 2011 19 / 22



Evolution of concentrations (Post-doc B. Gueslin)

t = 0
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Evolution of concentrations (Post-doc B. Gueslin)

t = 400 years
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Evolution of concentrations (Post-doc B. Gueslin)

t = 800 years
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Evolution of concentrations (Post-doc B. Gueslin)

t = 1200 years
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Evolution of concentrations (Post-doc B. Gueslin)

t = 1600 years
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Evolution of concentrations (Post-doc B. Gueslin)

t = 2000 years
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Evolution of concentrations (Post-doc B. Gueslin)

t = 2400 years
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Evolution of concentrations (Post-doc B. Gueslin)

t = 2800 years
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Evolution of concentrations (Post-doc B. Gueslin)

t = 3200 years
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Evolution of concentrations (Post-doc B. Gueslin)

t = 3600 years
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Evolution of concentrations (Post-doc B. Gueslin)

t = 4000 years
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Evolution of concentrations (Post-doc B. Gueslin)

t = 5000 years
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Evolution of concentrations (Post-doc B. Gueslin)

t = 7000 years
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Evolution of concentrations (Post-doc B. Gueslin)

t = 10000 years
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Newton–Krylov and preconditioner performance

h h/2 h/4 h/8
NI LI NI LI NI LI NI LI

No prec. 8 42 8 76 10 105 10 177
BGS 8 23 7 24 7 22 8 25

Elimination 5 15 5 15 5 15 5 15

Mesh dependance : adaptive forcing term

NI : # nonlinear iters, NLI : total # linear iters.
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Work in progress – future work

Work in progress
Reduction of CPU time in DAE methods

Parallel software

Experimental comparison with SNIA method

Reactive models with kinetics and precipitation-dissolution

Future work

Species appearance / disappearance as complementarity problem

Improving the substitution approach

Exploring mesh refinement strategies

Two phase flow with chemistry

Theses : S. Sabit (JE, Andra), V. Vostrikov (B. Amaziane, MK, Maison de la
Simulation)
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Exploring mesh refinement strategies

Two phase flow with chemistry

Theses : S. Sabit (JE, Andra), V. Vostrikov (B. Amaziane, MK, Maison de la
Simulation)
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